Skip to main content
  • Place orders quickly and easily
  • View orders and track your shipping status
  • Enjoy members-only rewards and discounts
  • Create and access a list of your products

Data Domain: Forstå Data Domain-komprimering

Summary: Terminologier, avveininger og mål forklares her for å beskrive komprimeringstypene som brukes, terminologi og andre aspekter ved komprimering på Data Domain.

This article applies to This article does not apply to This article is not tied to any specific product. Not all product versions are identified in this article.

Instructions

Komprimeringsteknikkene som er involvert i et datadomene, bruker toppmoderne teknikker for å redusere den fysiske plassen som kreves av kundedata. Teknologien bak og målinger av komprimeringsnivåer er derfor komplekse emner. Dette dokumentet drøfter noen av terminologiene, avveiningene og tiltakene for bedre å forklare komprimeringstypene som brukes, terminologien og andre aspekter ved komprimering i et Data Domain-system.

GJELDER FOR:
Alle Data Domain-modeller

1. Innledning

Sist oppdatert: januar 2024

Compression er en datareduksjonsteknologi som tar sikte på å lagre et datasett ved å bruke mindre fysisk plass. I Data Domain-systemer (DDOS) utfører vi deduplisering og lokal komprimering for å komprimere brukerdata. Deduplisering brukes til å identifisere overflødige datasegmenter og kun lagre unike datasegmenter. Lokal komprimering komprimerer de unike datasegmentene ytterligere med visse komprimeringsalgoritmer, for eksempel lz, gzfast, gz, så videre. Den generelle brukerdatakomprimeringen i DDOS er en felles innsats av deduplisering og lokal komprimering. DDOS bruker "komprimeringsforhold" til å måle effektiviteten av datakomprimeringen. Generelt er det forholdet mellom den totale brukerdatastørrelsen og den totale størrelsen på komprimerte data eller den brukte fysiske plassstørrelsen.

Data Domain-filsystemet er et "log-strukturert" dedupliseringsfilsystem. Et loggstrukturert filsystem legger bare til data i systemet, og sletting alene kan ikke frigjøre fysisk plass. Slike filsystemer er avhengige av datasanering for å gjenvinne ledig plass. Egenskapene til det loggstrukturerte filsystemet og den dedupliserte teknologien kombinert sammen gjør det vanskelig å forstå alle aspekter av komprimering i DDOS.

For kompresjon er det mange aspekter vi kan måle. I dette dokumentet diskuterer vi detaljene trinn for trinn for å forstå DDOS-komprimering. Først forklarer vi den generelle systemkomprimeringseffekten, som forteller oss den realistiske komprimeringen som oppnås i et Data Domain-system, mengden brukerdata, mengden fysisk plass som brukes og forholdet mellom dem. Dette forholdet kalles "system effektivt kompresjonsforhold" i dette dokumentet. DDOS utfører deduplisering inline og sporer statistikken til de opprinnelige brukerdatasegmentene, unike datasegmenter etter deduplisering og den lokale komprimeringseffekten på de unike datasegmentene. Denne interne komprimeringsstatistikken brukes til å måle den interne komprimeringseffekten. Innebygd komprimeringsstatistikk kan måles for hver skriving. DDOS holder også oversikt over statistikken på forskjellige nivåer; filer, MTrees og hele systemet.

Innholdet i dette dokumentet kan brukes på alle DDOS-utgivelser frem til publisering av dette dokumentet, opp til DDOS 7.13. Det er ingen garanti for at alt innholdet stemmer overens med fremtidige utgivelser. I utgivelser før 5.0 har hele systemet bare ett mtree, og termen mtree er ikke eksplisitt nevnt.

2. Komprimering: Total effekt på systemet

Den systemomfattende samlede komprimeringseffekten måles av systemets effektive kompresjonsforhold, som er forholdet mellom brukerdatastørrelsen og størrelsen på brukt fysisk plass. Det rapporteres av filesys show compression (FSC) CLI-kommandoen (tilsvarende informasjon er også tilgjengelig på UI).  Et eksempel på FSC er vist nedenfor:

# filesys show compression

From: 2023-12-31 03:00 To: 2024-01-07 03:00


Active Tier:
                   Pre-Comp   Post-Comp   Global-Comp   Local-Comp      Total-Comp
                      (GiB)       (GiB)        Factor       Factor          Factor
                                                                     (Reduction %)
----------------   --------   ---------   -----------   ----------   -------------
Currently Used:*     6439.6       113.4             -            -    56.8x (98.2)
Written:
  Last 7 days      135421.3      1782.0         35.1x         2.2x    76.0x (98.7)
  Last 24 hrs         532.5         1.5        334.3x         1.1x   356.5x (99.7)
----------------   --------   ---------   -----------   ----------   -------------
 * Does not include the effects of pre-comp file deletes/truncates
   since the last cleaning on 2024/01/05 11:34:13.

Det effektive kompresjonsforholdet for systemet rapporteres i rad 1 i resultatdelen i CLI-utdataene. Raden er uthevet ovenfor. Den totale størrelsen på brukerdata er merket som "Pre-Comp". Det totale forbruket av fysisk plass (av både data og metadata) er merket som "Post-Comp."

Både "Pre-Comp"-nummeret og "Post-Comp"-nummeret leses under kjøring. FSC synkroniserer hele systemet implisitt og utfører deretter spørringer av de to tallene. Disse to tallene måles på samme måte som kommandoen "filesys show space".

Systemeffektivt kompresjonsforhold = Pre-Comp/Post-Comp

Resten av FSC-utgangen beskriver inline-komprimeringsstatistikken, og vi diskuterer dem senere.

Det er noen operasjoner som kan påvirke systemets effektive kompresjonsforhold:

  • Fastcopy

    • Når en hurtigkopi utføres fra en fil i det aktive navneområdet (ikke et øyeblikksbilde), er det en perfekt deduplisering, siden det ikke er behov for ekstra fysisk plass for målfilen. Effekten av en rask kopi er at vi øker brukerdatastørrelsen uten å bruke mer fysisk plass. Dette øker systemets effektive kompresjonsforhold. Når mange hurtigkopier er ferdige, kan systemets effektive kompresjonsforhold bli kunstig høyt.

  • Virtuell syntetikk

    • Virtuelle syntetiske sikkerhetskopier har en tendens til å vise et høyt systemeffektivt kompresjonsforhold. Dette er fordi virtuelle syntetiske stoffer gir logiske fullstendige sikkerhetskopier, men bare overfører endrede eller nye data til Data Domain-systemer. Virkningen på systemets effektive kompresjonsforhold for virtuell syntetikk er noe som effekten av fastcopy.

  • Overskriver

    • Overskrivinger bruker mer fysisk plass, men øker ikke den logiske størrelsen på datasettet, og dermed overskrives det effektive komprimeringsforholdet for systemet.

  • Lagring av sparsomme filer

    • Spredte filer inneholder store "hull" som regnes med i den logiske størrelsen, men som ikke bruker fysisk plass på grunn av komprimering. Dermed kan de få systemets effektive komprimeringsforhold til å virke høyt.

  • Lagring av små filer

    • DDOS legger nesten 1 kB overhead til hver fil for enkelte interne metadata. Når et system lagrer et betydelig antall små filer (størrelser mindre enn 1 KB eller i ensifrede kilobyte), drar overheaden av metadata det effektive komprimeringsforholdet ned.

  • Lagring av forhåndskomprimerte eller forhåndskrypterte filer

    • Komprimering og kryptering kan forsterke nivået av dataendring og redusere muligheten for deduplisering. Slike filer kan vanligvis ikke dedupliseres godt og bringe systemets effektive kompresjonsforhold lavere.

  • Sletter

    • Sletting reduserer den logiske størrelsen på systemet, men systemet får ikke den tilsvarende ubrukte plassen tilbake før man kjører datasanering. Mange slettede filer gjør kompresjonsforholdet lavt til søppelinnsamling (GC) kjører.

  • Søppelrydding (GC) eller rengjøring

    • GC gjenvinner plassen som forbrukes av datasegmenter som ikke lenger ses av noen fil. Hvis mange filer nylig har blitt slettet, kan datasanering øke systemets komprimeringsforhold ved å redusere bruken av fysisk plass.

  • Aggressivt ta øyeblikksbilder

    • Når vi tar et øyeblikksbilde av et Mtree, endrer vi ikke den logiske størrelsen på datasettet. Alle datasegmenter som øyeblikksbildet refererer til, må imidlertid være låst, selv om alle filer som registreres av øyeblikksbildet, slettes etter at øyeblikksbildet ble tatt. GC kan ikke gjenvinne plassen som fortsatt trengs av øyeblikksbilder; Å ha mange øyeblikksbilder kan derfor gjøre at systemets effektive kompresjonsforhold virker lavt. Øyeblikksbilder er imidlertid nyttige fasiliteter for gjenoppretting av krasj. Vi bør aldri nøle med å ta øyeblikksbilder eller konfigurere passende tidsplaner for øyeblikksbilder ved behov.

3. Komprimering: Intern statistikk

DDOS utfører deduplisering innebygd, ettersom data skrives til systemet. Den sporer effekten av innebygd deduplisering og lokal komprimering for hver skriving, og akkumulerer statistikken på filnivå. Statistikk for innebygd komprimering per fil aggregeres videre på mtree-nivå og systemnivå. Kompresjon måles basert på tre tall i inline-statistikken:

  • Lengden på hver skriving, kalt raw_bytes
  • Lengden på alle unike segmenter, kalt pre_lc_size
  • Lengden på lokalt komprimerte unike segmenter, kalt post_lc_size

Basert på de tre tallene ovenfor, definerer DDOS ytterligere to kompresjonsforhold med fingranularitet:

  • Global komprimering (g_comp). Den er lik (raw_bytes/pre_lc_size), og gjenspeiler dedupliseringsforholdet;
  • Lokal komprimering (l_comp). Den er lik (pre_lc_size/post_lc_size) og gjenspeiler effekten av den lokale komprimeringsalgoritmen.

Den akkumulerte interne komprimeringsstatistikken er en del av filmetadataene i DDOS og lagres i fil-inoden. DDOS gir verktøy for å kontrollere inline-komprimeringene på alle tre nivåer; -fil, MTree og hele systemet. Vi detaljerer dem i de følgende avsnittene.

3.1 Filkomprimering Filkomprimering
kan kontrolleres med CLI-kommandoen "filesys show compression <path>", som rapporterer den akkumulerte komprimeringsstatistikken som er lagret i filinoden. Når en katalog er angitt, blir innebygd komprimeringsstatistikk for alle filene under denne katalogen oppsummert og rapportert. I CLI-utgangen er raw_bytes merket som "Original Bytes"; pre_lc_size er merket som "Globally Compressed"; post_lc_bytes er merket som "Lokalt komprimert"; de andre omkostningene rapporteres som "Metadata". De to eksemplene er hentet fra en faktisk DD:

Eksempel 1: Innebygd komprimeringsstatistikk for en fil

# filesys show compression /data/col1/main/dir1/file_1 
Total files: 1;  bytes/storage_used: 7.1
        Logical Bytes:       53,687,091,200
       Original Bytes:       11,463,643,380
  Globally Compressed:        4,373,117,751
   Locally Compressed:        1,604,726,416
            Meta-data:           18,118,232

Eksempel 2: Innebygd komprimeringsstatistikk for alle filer under en katalog, inkludert alle underkataloger

# filesys show compression /data/col1/main/dir1 
Total files: 13;  bytes/storage_used: 7.1
        Logical Bytes:       53,693,219,809
       Original Bytes:       11,501,978,884
  Globally Compressed:        4,387,212,404
   Locally Compressed:        1,608,444,046
            Meta-data:           18,241,880

Systemet rapporterer det totale inline-kompresjonsforholdet i CLI-utgangen ovenfor som "byte/storage_used".  Informasjonen ovenfor kan imidlertid være misvisende av flere årsaker, så du må være nøye når du skal tolke den. En av årsakene er at pre_lc_size og post_lc_size registreres på det tidspunktet da dataoperasjonene behandles. Når filen som opprinnelig la til disse segmentene, blir slettet, bør antallet unike datasegmenter i den gjenværende filen økes.

Anta for eksempel at en fil sample.file er sikkerhetskopiert til et datadomene, og i den første sikkerhetskopien er komprimeringsinformasjonen for filen pre_lc_size=10GiB, post_lc_size=5Gib.

Anta deretter at dataene i denne filen er unike uten datadeling med noen annen fil. I den andre sikkerhetskopien av filen antar du videre at filen får ideell deduplisering, slik at både pre_lc_size og post_lc_size skal være null fordi alle segmenter av filen allerede eksisterte på systemet. Når den første sikkerhetskopien slettes, blir den andre sikkerhetskopien av filen den eneste filen som refererer til 5 GiB datasegmenter. I dette tilfellet bør ideelt sett pre_lc_size og post_lc_size til filen i den andre sikkerhetskopien oppdateres fra begge å være henholdsvis 10 GiB og 5 GiB. Det er imidlertid ingen måte å oppdage hvilke filer det skal gjøres for, så den innebygde komprimeringsstatistikken for de eksisterende filene blir uendret.

En annen faktor som påvirker tallene ovenfor er den kumulative statistikken. Når en fil får mange overskrivinger, er det umulig å spore i hvilken grad den kumulative statistikken gjenspeiler skrivingene som introduserte live-dataene. Dermed kan inline-komprimeringsstatistikken over lang tid bare behandles som en heuristikk for grovt å estimere komprimeringen av en bestemt fil.

Et annet faktum som er verdt å fremheve er at den innebygde komprimeringen av en fil ikke kan måles for et vilkårlig tidsintervall. Filen innebygd komprimering statistikk er et kumulativt resultat og dekker alle skriver at filen noensinne har mottatt. Når en fil mottar mange overskrivninger, kan raw_bytes være langt større enn den logiske størrelsen på filen. For sparsomme filer kan filstørrelsene være større enn "Original Bytes".

3.2 MTree-komprimering
Vi kan sjekke komprimeringen av et bestemt mtree med "mtree show compression" (VG Nett) CLI-kommando. De absolutte verdiene for inline-komprimeringsstatistikken er kumulative over MTrees levetid. Gitt at levetiden til en MTree kan være mange år lang, blir disse verdiene mindre og mindre informative over tid. For å løse dette problemet bruker vi mengden endring (deltaer) i den innebygde komprimeringsstatistikken og rapporterer komprimering bare for bestemte tidsintervaller. Den underliggende tilnærmingen er at vi med jevne mellomrom dumper MTree inline komprimeringsstatistikk til en logg. Når en klient spør MTree-komprimering med MSC-kommandoen, bruker vi loggen til å beregne deltaene til tallene for komprimeringsrapportering. Som standard rapporterer MSC komprimering for de siste 7 dagene og de siste 24 timene, selv om en hvilken som helst tidsperiode av interesse kan spesifiseres.

Anta følgende logg for å demonstrere MTree A:

3:00AM, raw_bytes=11000GB, pre_lc_size=100GB, post_lc_size=50GB 4:00AM, raw_bytes=12000GB, pre_lc_size=200GB, post_lc_size=100GB

Da er komprimeringen av MTree A for denne timen:

g_comp = (12000-11000)/(200-100) = 10x
l_comp = (200-100)/(100-50) = 2x
overall compression ratio = (12000-11000)/(100-50) = 20x

Beregningen av kompresjonsforholdet ovenfor gjør ingenting med størrelsen på datasettet. Det kan for eksempel hende at mtreet ovenfor bare har 500 GB logiske data.

MSC støtter alternativene "daglig" og "daglig detaljert", og det samme gjør kommandoen "filesys show compression". Når "daglig" er angitt, rapporterer kommandoen den daglige komprimeringen på en kalendermåte. Det bruker de daglige deltaene i raw_bytes og post_lc_size til å beregne det daglige komprimeringsforholdet. Når "daglig detaljert" er angitt, viser kommandoen alle tre deltaene (av henholdsvis raw_bytes, pre_lc_size og post_lc_size) for hver dag. Den beregner også g_comp og l_comp sammen med den totale kompresjonsfaktoren.

Prøveutdata fra disse systemene finnes i vedlegget.

3.3 Systemkompresjon
Når vi forstår hvordan komprimering rapporteres på MTrees, er det enkelt å utvide konseptet til hele systemet. Den systemomfattende komprimeringen, inline-statistikkinnsamlingen og rapporteringen er nøyaktig den samme som med MTrees. Den eneste forskjellen er omfanget, som man er i en bestemt MTree, mens man er over hele systemet. Resultatene kan kontrolleres ved hjelp av kommandoen "filesys show compression". Et eksempel på dette finnes i avsnitt 2. Systemkomprimeringen "siste 7 dager" og "siste 24 timer" rapporteres i de to siste linjene i resultatdelen i FSC-utdataene.

4. Nettskynivå

På DD-er med implementert skynivå deles lagringen inn i aktivt nivå og skynivå, som er to uavhengige dedupliseringsdomener. Brukere kan bare sette inn data på det aktive nivået. Senere kan DDOS-dataflyttingsfunksjoner brukes til å overføre data fra det aktive nivået til skynivået. Dermed håndteres måling og rapportering av plass og kompresjon uavhengig av hverandre i hvert nivå. Men på filnivå skiller vi ikke etter nivå og rapporterer innebygd komprimeringsstatistikk; de er nøyaktig de samme som det vi beskrev i avsnitt 3.1.

5. Duplikatfjerning

Det siste emnet som bør fremheves, er noen av egenskapene til deduplisering, som kalles "global komprimering" i mange Data Domain-dokumenter. Selv om den inneholder ordet "komprimering", er det helt annerledes enn det tradisjonelle begrepet komprimering, som også leveres av DDOS under navnet "lokal komprimering."

Lokal komprimering reduserer størrelsen på et stykke data ved hjelp av en bestemt algoritme (noen typer data er ikke komprimerbare, og bruk av komprimeringsalgoritmer på dem kan øke datastørrelsen litt). Vanligvis, når en algoritme er bestemt, er selve dataene den eneste faktoren for kompresjonsforholdet.

Deduplisering er imidlertid annerledes - det er ikke et lokalt konsept, det er "globalt". Et innkommende datasegment dupliseres mot alle eksisterende datasegmenter i et deduplisert domene, som inkluderer alle dataene på Data Domain-systemer som ikke er skybaserte. Datasegmentet i seg selv spiller ingen rolle i dedupliseringsprosedyren.

I praksis ser vi sjelden høyt dedupliseringsforhold i den første sikkerhetskopien av et datasett. I første sikkerhetskopiering er den store datareduksjonen ofte et resultat av lokal komprimering. Når påfølgende sikkerhetskopier lander på Data Domain, viser deduplisering styrken og blir den dominerende komprimeringsfaktoren. Effektiviteten av deduplisering er avhengig av det faktum at endringshastigheten til et datasett er lav fra sikkerhetskopiering til sikkerhetskopiering. Av denne grunn kan datasett med høye endringsfrekvenser ikke bli godt duplisert. Når sikkerhetskopieringsprogrammet setter inn sine egne metadatabiter (kalt markører av Data Domain) i sikkerhetskopiavbildningene med høy frekvens, kan det også hende at det heller ikke får et godt dedupliseringsforhold. Våre markørhåndteringsteknikker kan hjelpe noen ganger, men ikke alltid.

Gitt disse observasjonene, hva kan vi forvente?

  • Innledende sikkerhetskopier kan bare oppnå et lite systemeffektivt kompresjonsforhold, ofte 2x eller 3x. Dedupe har vanligvis liten mulighet til å vise sin styrke i innledende sikkerhetskopier.
  • Det globale komprimeringsforholdet til en trinnvis sikkerhetskopiering er lavere enn komprimeringsforholdet til den tilsvarende fullstendige sikkerhetskopieringen. Grunnen til dette er at en trinnvis sikkerhetskopiering bare inneholder endrede eller nye filer sammenlignet med sikkerhetskopieringen rett før. Det globale komprimeringsforholdet avhenger av prosentandelen nye data i den trinnvise sikkerhetskopieringen.
  • Dedupliseringsforholdet for en full sikkerhetskopi (de ikke-innledende) kan også være lavt i noen scenarier. Noen ofte observerte scenarier inkluderer:
    • En høy endringsfrekvens i dataene som sikkerhetskopieres
    • Datasettet domineres av små filer (mindre enn 5 MiB)
    • Sikkerhetskopieringsprogrammer legger til mange markører med tett avstand
    • Databasesikkerhetskopier som er trinnvise eller bruker liten blokkstørrelse
    • Når et lavt kompresjonsforhold observeres i en full sikkerhetskopi med lav dataendringshastighet, må vi sjekke om et av de ovennevnte tilfellene gjelder, eller om ytterligere analyse er nødvendig.
  • Komprimering av et senere sikkerhetskopibilde er ikke alltid bedre enn det første. Påfølgende sikkerhetskopieringsbilder kan vise et høyt dedupliseringsforhold fordi de første og tidligere sikkerhetskopiavbildningene allerede har lagt til mesteparten av dataene i systemet. Når alle tidligere sikkerhetskopibilder slettes, kan det globale og lokale komprimeringsforholdet til det tidligste eksisterende sikkerhetskopibildet fortsatt være høyt, men dette betyr bare at det fikk god deduplisering da det ble lagt til systemet, ingenting annet. Når en fil som har et høyt globalt og lokalt komprimeringsforhold, slettes, og som er den siste sikkerhetskopiavbildningen for et bestemt datasett, kan det frigjøre mer plass enn størrelsen som er avledet fra kompresjonsforholdet.
  • Kompresjonsforhold for samme datasett på forskjellige systemer kan ikke sammenlignes, uavhengig av hvordan datasettet legges til disse systemene. Dette er fordi at hvert system er et uavhengig dedupliseringsdomene. Det er ingen forventning om at to forskjellige DD-er får samme eller til og med nødvendigvis like kompresjonsforhold, selv om datasettene deres er de samme.

 6. Sammendrag

Måling av komprimering er vanskelig i dedupliserte filsystemer, men det er enda vanskeligere i log-strukturerte dedupliserte filsystemer. Vi må forstå hvordan deduplisering fungerer og hvordan komprimeringsstatistikk spores. Kompresjonsforhold er nyttig informasjon for å forstå oppførselen til et bestemt system. Systemeffektivt kompresjonsforhold er det viktigste, pålitelige og informative tiltaket. Den innebygde komprimeringsstatistikken kan også være nyttig, men de kan ikke være mer enn heuristikk under noen omstendigheter.

Vedlegg: Utgang av sampling av "mtree show compression" kommando

Anta at det er en MTree som inneholder 254792,4 GiB data. Den har mottatt 4379,3 GiB nye data de siste 7 dagene, og 78,4 GiB de siste 24 timene (andre tidsintervaller kan spesifiseres). Alternativet "daily" (daglig) rapporterer den interne komprimeringsstatistikken for de siste 33 dagene. Når alternativet "daglig detaljert" er gitt, blir de totale kompresjonsforholdene ytterligere detaljert ved å separere dem i globale og lokale kompresjonsforhold.

Utdata fra Mtree-listen:

# mtree list /data/col1/main 
Name              Pre-Comp (GiB)   Status
---------------   --------------   ------
/data/col1/main         254792.4   RW
---------------   --------------   ------
 D    : Deleted
 Q    : Quota Defined
 RO   : Read Only
 RW   : Read Write
 RD   : Replication Destination
 IRH  : Retention-Lock Indefinite Retention Hold Enabled
 ARL  : Automatic-Retention-Lock Enabled
 RLGE : Retention-Lock Governance Enabled
 RLGD : Retention-Lock Governance Disabled
 RLCE : Retention-Lock Compliance Enabled
 M    : Mobile
 m    : Migratable
MSC (ingen alternativer):
# mtree show compression /data/col1/main

From: 2023-09-07 12:00 To: 2023-09-14 12:00

                Pre-Comp   Post-Comp   Global-Comp   Local-Comp      Total-Comp
                   (GiB)       (GiB)        Factor       Factor          Factor
                                                                  (Reduction %)
-------------   --------   ---------   -----------   ----------   -------------
Written:
  Last 7 days     4379.3       883.2          3.4x         1.5x     5.0x (79.8)
  Last 24 hrs      784.6       162.1          3.3x         1.4x     4.8x (79.3)
-------------   --------   ---------   -----------   ----------   -------------

Med alternativet "daglig":

# mtree show compression /data/col1/main daily

From: 2023-08-12 12:00 To: 2023-09-14 12:00

  Sun     Mon     Tue     Wed     Thu     Fri     Sat   Weekly
-----   -----   -----   -----   -----   -----   -----   ------   -----------------
 -13-    -14-    -15-    -16-    -17-    -18-    -19-            Date
432.0   405.9   284.1   438.8   347.0   272.7   331.4   2511.8   Pre-Comp
 85.5    66.2    45.3    81.9    61.4    57.4    66.3    464.1   Post-Comp
 5.0x    6.1x    6.3x    5.4x    5.7x    4.7x    5.0x     5.4x   Total-Comp Factor

 -20-    -21-    -22-    -23-    -24-    -25-    -26-
478.0   387.8   450.2   533.1   386.0   258.4   393.6   2887.1
100.6    81.5   100.8   119.0    84.0    40.6    75.3    601.8
 4.8x    4.8x    4.5x    4.5x    4.6x    6.4x    5.2x     4.8x

 -27-    -28-    -29-    -30-    -31-     -1-     -2-
 27.6     1.0     0.4   470.7   467.3   517.7   641.9   2126.7
  4.9     0.2     0.1    83.9    92.3    89.8   140.1    411.2
 5.6x    5.6x    4.3x    5.6x    5.1x    5.8x    4.6x     5.2x

  -3-     -4-     -5-     -6-     -7-     -8-     -9-
539.6   495.0   652.8   658.7   537.1   398.7   305.5   3587.3 
110.8   108.0   139.4   137.0   111.5    78.3    48.3    733.3 
 4.9x    4.6x    4.7x    4.8x    4.8x    5.1x    6.3x     4.9x 

 -10-    -11-    -12-    -13-    -14-   
660.2   738.3   787.2   672.9   796.9                   3655.5
143.9   152.5   167.6   126.9   163.3                    754.2 
 4.6x    4.8x    4.7x    5.3x    4.9x                     4.8x 
-----   -----   -----   -----   -----   -----   -----   ------   -----------------
                 Pre-Comp   Post-Comp   Global-Comp   Local-Comp      Total-Comp
                    (GiB)       (GiB)        Factor       Factor          Factor
                                                                   (Reduction %)
--------------   --------   ---------   -----------   ----------   -------------
Written:
  Last 33 days    14768.3      2964.5          3.4x         1.5x     5.0x (79.9)
  Last 24 hrs       784.6       162.1          3.3x         1.4x     4.8x (79.3)
--------------   --------   ---------   -----------   ----------   -------------

Key:
       Pre-Comp = Data written before compression
       Post-Comp = Storage used after compression
       Global-Comp Factor = Pre-Comp / (Size after de-dupe)
       Local-Comp Factor = (Size after de-dupe) / Post-Comp
       Total-Comp Factor = Pre-Comp / Post-Comp
       Reduction % = ((Pre-Comp - Post-Comp) / Pre-Comp) * 100

Med alternativet "daglig detaljert":

# mtree show compression /data/col1/main daily-detailed 

From: 2023-08-12 12:00 To: 2023-09-14 12:00

  Sun     Mon     Tue     Wed     Thu    Fri     Sat    Weekly
-----   -----   -----   -----   -----   -----   -----   ------   -----------------
 -13-    -14-    -15-    -16-    -17-    -18-    -19-            Date
432.0   405.9   284.1   438.8   347.0   272.7   331.4   2511.8   Pre-Comp
 85.5    66.2    45.3    81.9    61.4    57.4    66.3    464.1   Post-Comp
 3.5x    4.1x    4.3x    3.6x    3.8x    3.3x    3.4x     3.7x   Global-Comp Factor
 1.4x    1.5x    1.5x    1.5x    1.5x    1.4x    1.5x     1.5x   Local-Comp Factor
 5.0x    6.1x    6.3x    5.4x    5.7x    4.7x    5.0x     5.4x   Total-Comp Factor
 80.2    83.7    84.1    81.3    82.3    78.9    80.0     81.5   Reduction %

 -20-    -21-    -22-    -23-    -24-    -25-    -26-
478.0   387.8   450.2   533.1   386.0   258.4   393.6   2887.1
100.6    81.5   100.8   119.0    84.0    40.6    75.3    601.8
 3.3x    3.3x    3.0x    3.0x    3.3x    4.1x    3.6x     3.3x 
 1.4x    1.5x    1.5x    1.5x    1.4x    1.5x    1.4x     1.5x 
 4.8x    4.8x    4.5x    4.5x    4.6x    6.4x    5.2x     4.8x
 79.0    79.0    77.6    77.7    78.2    84.3    80.9     79.2

 -27-    -28-    -29-    -30-    -31-    -1-     -2-
 27.6     1.0     0.4   470.7   467.3   517.7   641.9   2126.7
  4.9     0.2     0.1    83.9    92.3    89.8   140.1    411.2
 4.4x    3.7x    2.6x    3.8x    3.5x    3.9x    3.2x     3.5x 
 1.3x    1.5x    1.6x    1.5x    1.4x    1.5x    1.5x     1.5x
 5.6x    5.6x    4.3x    5.6x    5.1x    5.8x    4.6x     5.2x
 82.1    82.2    76.8    82.2    80.3    82.7    78.2     80.7

  -3-     -4-     -5-     -6-     -7-    -8-     -9-
539.6   495.0   652.8   658.7   537.1   398.7   305.5   3587.3 
110.8   108.0   139.4   137.0   111.5    78.3    48.3    733.3 
 3.4x    3.1x    3.2x    3.4x    3.3x    3.4x    4.1x     3.3x 
 1.4x    1.5x    1.5x    1.4x    1.4x    1.5x    1.6x     1.5x
 4.9x    4.6x    4.7x    4.8x    4.8x    5.1x    6.3x     4.9x 
 79.5    78.2    78.6    79.2    79.2    80.4    84.2     79.6

 -10-    -11-    -12-    -13-    -14-   
660.2   738.3   787.2   672.9   796.9                   3655.5
143.9   152.5   167.6   126.9   163.3                    754.2
 3.1x    3.4x    3.2x    3.7x    3.4x                      .3x 
 1.5x    1.4x    1.5x    1.4x    1.5x                     1.5x
 4.6x    4.8x    4.7x    5.3x    4.9x                     4.8x
 78.2    79.3    78.7    81.1    79.5                     79.4
-----   -----   -----   -----   -----   -----   -----   ------   -----------------
                 Pre-Comp   Post-Comp   Global-Comp   Local-Comp      Total-Comp
                    (GiB)       (GiB)        Factor       Factor          Factor
                                                                   (Reduction %)
--------------   --------   ---------   -----------   ----------   -------------
Written:
  Last 33 days    14768.3      2964.5          3.4x         1.5x     5.0x (79.9)
  Last 24 hrs       784.6       162.1          3.3x         1.4x     4.8x (79.3)
--------------   --------   ---------   -----------   ----------   -------------

Key:
       Pre-Comp = Data written before compression
       Post-Comp = Storage used after compression
       Global-Comp Factor = Pre-Comp / (Size after de-dupe)
       Local-Comp Factor = (Size after de-dupe) / Post-Comp
       Total-Comp Factor = Pre-Comp / Post-Comp
       Reduction % = ((Pre-Comp - Post-Comp) / Pre-Comp) * 100

Affected Products

Data Domain

Products

Data Domain
Article Properties
Article Number: 000003886
Article Type: How To
Last Modified: 17 Jun 2024
Version:  18
Find answers to your questions from other Dell users
Support Services
Check if your device is covered by Support Services.